python学习——知识点汇总——面向对象/IO/进程线程

2020-05-26 loading

# 面向对象编程

面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。

面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。

而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。

面向对象的设计思想是从自然界中来的,因为在自然界中,类(Class)和实例(Instance)的概念是很自然的。Class是一种抽象概念,比如我们定义的Class——Student,是指学生这个概念,而实例(Instance)则是一个个具体的Student,比如,Bart Simpson和Lisa Simpson是两个具体的Student。

所以,面向对象的设计思想是抽象出Class,根据Class创建Instance。

面向对象的抽象程度又比函数要高,因为一个Class既包含数据,又包含操作数据的方法。

数据封装、继承和多态是面向对象的三大特点,我们后面会详细讲解。

# 访问限制-例子

请把下面的Student对象的gender字段对外隐藏起来,用get_gender()和set_gender()代替,并检查参数有效性:

#改造前
class Student(object):
    def __init__(self, name, gender):
        self.name = name
        self.gender = gender

#改造后
class Student(object):
    def __init__(self, name, gender):
        self.name = name
        self.__gender = gender
    def get_gender(self):
        return self.__gender
    def set_gender(self,gender):
        self.__gender = gender



# 测试:
bart = Student('Bart', 'male')
if bart.get_gender() != 'male':
    print('测试失败!')
else:
    bart.set_gender('female')
    if bart.get_gender() != 'female':
        print('测试失败!')
    else:
        print('测试成功!')

# 继承和多态

在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。

当子类和父类都存在相同的run()方法时,我们说,子类的run()覆盖了父类的run(),在代码运行的时候,总是会调用子类的run()。这样,我们就获得了继承的另一个好处:多态。

在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。

# 静态语言 vs 动态语言

对于静态语言(例如Java)来说,如果需要传入Animal类型,则传入的对象必须是Animal类型或者它的子类,否则,将无法调用run()方法。

对于Python这样的动态语言来说,则不一定需要传入Animal类型。我们只需要保证传入的对象有一个run()方法就可以了:

这就是动态语言的“鸭子类型”,它并不要求严格的继承体系,一个对象只要“看起来像鸭子,走起路来像鸭子”,那它就可以被看做是鸭子。

继承可以把父类的所有功能都直接拿过来,这样就不必重零做起,子类只需要新增自己特有的方法,也可以把父类不适合的方法覆盖重写。

动态语言的鸭子类型特点决定了继承不像静态语言那样是必须的。

# 获取对象信息

  • 使用type():它返回对应的Class类型。
  • 使用isinstance():一个对象是否是某种类型.
    • 总是优先使用isinstance()判断类型,可以将指定类型及其子类“一网打尽”。
  • 使用dir():如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list
    • 仅仅把属性和方法列出来是不够的,配合getattr()、setattr()以及hasattr(),我们可以直接操作一个对象的状态:

# 实例属性和类属性

  • 实例属性属于各个实例所有,互不干扰;

  • 类属性属于类所有,所有实例共享一个属性;

  • 不要对实例属性和类属性使用相同的名字,否则将产生难以发现的错误。

# 例子

为了统计学生人数,可以给Student类增加一个类属性,每创建一个实例,该属性自动增加:

class Student(object):
    count = 0

    def __init__(self, name):
        print('__init__',self.count)
        self.name = name
        # self.count = self.count + 1 #worong
        Student.count += 1



# 测试:
if Student.count != 0:
    print('测试失败!')
else:
    bart = Student('Bart')
    if Student.count != 1:
        print('测试失败!')
    else:
        lisa = Student('Bart')
        if Student.count != 2:
            print('测试失败!')
        else:
            print('Students:', Student.count)
            print('测试通过!')

# 面向对象高级编程

# 使用__slots__

正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。

但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加name和age属性

class Student(object):
    __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。

  • 使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:
>>> class GraduateStudent(Student):
...     pass
...
>>> g = GraduateStudent()
>>> g.score = 9999

# 使用@property

Python内置的@property装饰器就是负责把一个方法变成属性调用的:

# 练习

请利用@property给一个Screen对象加上width和height属性,以及一个只读属性resolution:

class Screen(object):
    @property
    def width(self):
        return self._width
    
    @width.setter 
    def width(self,val):
        self._width = val

    @property
    def height(self):
        return self._height
    
    @height.setter 
    def height(self,val):
        self._height = val 

    @property
    def resolution(self):
        return self._height * self._width
# 测试:
s = Screen()
s.width = 1024
s.height = 768
print('resolution =', s.resolution)
if s.resolution == 786432:
    print('测试通过!')
else:
    print('测试失败!')

# 多重继承

通过多重继承,一个子类就可以同时获得多个父类的所有功能。

class Dog(Mammal, Runnable):
    pass

由于Python允许使用多重继承,因此,MixIn就是一种常见的设计。

只允许单一继承的语言(如Java)不能使用MixIn的设计。

# 定制类

# str

>>> class Student(object):
...     def __init__(self, name):
...         self.name = name
...     def __str__(self):
...         return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)

这是因为直接显示变量调用的不是__str__(),而是__repr__(),两者的区别是__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,repr()是为调试服务的。

class Student(object):
    def __init__(self, name):
        self.name = name
    def __str__(self):
        return 'Student object (name=%s)' % self.name
    __repr__ = __str__

# iter

如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。

我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:

class Fib(object):
    def __init__(self):
        self.a, self.b = 0, 1 # 初始化两个计数器a,b

    def __iter__(self):
        return self # 实例本身就是迭代对象,故返回自己

    def __next__(self):
        self.a, self.b = self.b, self.a + self.b # 计算下一个值
        if self.a > 100000: # 退出循环的条件
            raise StopIteration()
        return self.a # 返回下一个值

现在,试试把Fib实例作用于for循环:

>>> for n in Fib():
...     print(n)
...
1
1
2
3
5
...
46368
75025

# getitem

要表现得像list那样按照下标取出元素,需要实现__getitem__()方法:

class Fib(object):
    def __getitem__(self, n):
        a, b = 1, 1
        for x in range(n):
            a, b = b, a + b
        return a
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101

# getattr

正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。

Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。

class Student(object):

    def __init__(self):
        self.name = 'Michael'

    def __getattr__(self, attr):
        if attr=='score':
            return 99
# 实例:

现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:

http://api.server/user/friends http://api.server/user/timeline/list 如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。

利用完全动态的__getattr__,我们可以写出一个链式调用:

class Chain(object):

    def __init__(self, path=''):
        self._path = path

    def __getattr__(self, path):
        return Chain('%s/%s' % (self._path, path))

    def __str__(self):
        return self._path

    __repr__ = __str__
>>> Chain().status.user.timeline.list
'/status/user/timeline/list'

# call

任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。请看示例:

class Student(object):
    def __init__(self, name):
        self.name = name

    def __call__(self):
        print('My name is %s.' % self.name)
>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.

# 使用枚举类

from enum import Enum

Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))

for name, member in Month.__members__.items():
    print(name, '=>', member, ',', member.value)

# Jan => Month.Jan , 1
# Feb => Month.Feb , 2
# Mar => Month.Mar , 3
# Apr => Month.Apr , 4
# May => Month.May , 5
# Jun => Month.Jun , 6
# Jul => Month.Jul , 7
# Aug => Month.Aug , 8
# Sep => Month.Sep , 9
# Oct => Month.Oct , 10
# Nov => Month.Nov , 11
# Dec => Month.Dec , 12
# 练习

把Student的gender属性改造为枚举类型,可以避免使用字符串:

from enum import Enum, unique
class Gender(Enum):
    Male = 0
    Female = 1

class Student(object):
    def __init__(self, name, gender):
        self.name = name
        self.gender = gender

# 测试:
bart = Student('Bart', Gender.Male)
if bart.gender == Gender.Male:
    print('测试通过!')
else:
    print('测试失败!')

Enum可以把一组相关常量定义在一个class中,且class不可变,而且成员可以直接比较。

# 使用元类

# type()

动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。

# metaclass

# IO编程

IO在计算机中指Input/Output,也就是输入和输出。由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等,就需要IO接口。

IO编程中,Stream(流)是一个很重要的概念,可以把流想象成一个水管,数据就是水管里的水,但是只能单向流动。Input Stream就是数据从外面(磁盘、网络)流进内存,Output Stream就是数据从内存流到外面去。对于浏览网页来说,浏览器和新浪服务器之间至少需要建立两根水管,才可以既能发数据,又能收数据。

由于CPU和内存的速度远远高于外设的速度,所以,在IO编程中,就存在速度严重不匹配的问题。举个例子来说,比如要把100M的数据写入磁盘,CPU输出100M的数据只需要0.01秒,可是磁盘要接收这100M数据可能需要10秒,怎么办呢?有两种办法:

  • 第一种是CPU等着,也就是程序暂停执行后续代码,等100M的数据在10秒后写入磁盘,再接着往下执行,这种模式称为同步IO;

  • 另一种方法是CPU不等待,只是告诉磁盘,“您老慢慢写,不着急,我接着干别的事去了”,于是,后续代码可以立刻接着执行,这种模式称为异步IO。

操作IO的能力都是由操作系统提供的,每一种编程语言都会把操作系统提供的低级C接口封装起来方便使用,Python也不例外。我们后面会详细讨论Python的IO编程接口。

# 文件读写

textPath = '/Users/yaya/Documents/learn/python/liao/test.txt'
curreentPath = '/Users/yaya/Documents/learn/python/liao'

with open(textPath, 'r') as f:
    print(f.read())

#覆盖
with open(textPath,'w') as f:
    f.write('code write!')

#追加
with open(textPath,'a') as f:
    f.write(' new code write!')

在Python中,文件读写是通过open()函数打开的文件对象完成的。使用with语句操作文件IO是个好习惯。

# StringIO和BytesIO

>>> from io import StringIO
>>> f = StringIO()
>>> f.write('hello')
5
>>> f.write(' ')
1
>>> f.write('world!')
6
>>> print(f.getvalue())
hello world!

getvalue()方法用于获得写入后的str。

>>> from io import StringIO
>>> f = StringIO('Hello!\nHi!\nGoodbye!')
>>> while True:
...     s = f.readline()
...     if s == '':
...         break
...     print(s.strip())
...
Hello!
Hi!
Goodbye!

StringIO操作的只能是str,如果要操作二进制数据,就需要使用BytesIO。

>>> from io import BytesIO
>>> f = BytesIO()
>>> f.write('中文'.encode('utf-8'))
6
>>> print(f.getvalue())
b'\xe4\xb8\xad\xe6\x96\x87'

>>> from io import BytesIO
>>> f = BytesIO(b'\xe4\xb8\xad\xe6\x96\x87')
>>> f.read()
b'\xe4\xb8\xad\xe6\x96\x87'

# 操作文件和目录

Python的os模块封装了操作系统的目录和文件操作,要注意这些函数有的在os模块中,有的在os.path模块中。

# 序列化

我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

Python语言特定的序列化模块是pickle,但如果要把序列化搞得更通用、更符合Web标准,就可以使用json模块。

json模块的dumps()和loads()函数是定义得非常好的接口的典范。当我们使用时,只需要传入一个必须的参数。但是,当默认的序列化或反序列机制不满足我们的要求时,我们又可以传入更多的参数来定制序列化或反序列化的规则,既做到了接口简单易用,又做到了充分的扩展性和灵活性。

# 进程和线程

对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程。

有些进程还不止同时干一件事,比如Word,它可以同时进行打字、拼写检查、打印等事情。在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”称为线程(Thread)。

如果我们要同时执行多个任务怎么办?

有两种解决方案:

  • 一种是启动多个进程,每个进程虽然只有一个线程,但多个进程可以一块执行多个任务。

  • 还有一种方法是启动一个进程,在一个进程内启动多个线程,这样,多个线程也可以一块执行多个任务。

  • 然还有第三种方法,就是启动多个进程,每个进程再启动多个线程,这样同时执行的任务就更多了,当然这种模型更复杂,实际很少采用。

总结一下就是,多任务的实现有3种方式:

  • 多进程模式;
  • 多线程模式;
  • 多进程+多线程模式。

线程是最小的执行单元,而进程由至少一个线程组成。如何调度进程和线程,完全由操作系统决定,程序自己不能决定什么时候执行,执行多长时间。

多进程和多线程的程序涉及到同步、数据共享的问题,编写起来更复杂。

# 多进程

Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回。

子进程永远返回0,而父进程返回子进程的ID。这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID.

Python的os模块封装了常见的系统调用,其中就包括fork,可以在Python程序中轻松创建子进程:

import os

print('Process (%s) start...' % os.getpid())
# Only works on Unix/Linux/Mac:
pid = os.fork()
if pid == 0:
    print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()))
else:
    print('I (%s) just created a child process (%s).' % (os.getpid(), pid))

#Process (876) start...
#I (876) just created a child process (877).
#I am child process (877) and my parent is 876.

multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:

from multiprocessing import Process
import os

# 子进程要执行的代码
def run_proc(name):
    print('Run child process %s (%s)...' % (name, os.getpid()))

if __name__=='__main__':
    print('Parent process %s.' % os.getpid())
    p = Process(target=run_proc, args=('test',))
    print('Child process will start.')
    p.start()
    p.join()
    print('Child process end.')

执行结果:

Parent process 928.
Child process will start.
Run child process test (929)...
Process end.

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。

join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。

# Pool

如果要启动大量的子进程,可以用进程池的方式批量创建子进程:

from multiprocessing import Pool
import os, time, random

def long_time_task(name):
    print('Run task %s (%s)...' % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)
    end = time.time()
    print('Task %s runs %0.2f seconds.' % (name, (end - start)))

if __name__=='__main__':
    print('Parent process %s.' % os.getpid())
    p = Pool(4)
    for i in range(5):
        p.apply_async(long_time_task, args=(i,))
    print('Waiting for all subprocesses done...')
    p.close()
    p.join()
    print('All subprocesses done.')

执行结果如下:

Parent process 669.
Waiting for all subprocesses done...
Run task 0 (671)...
Run task 1 (672)...
Run task 2 (673)...
Run task 3 (674)...
Task 2 runs 0.14 seconds.
Run task 4 (673)...
Task 1 runs 0.27 seconds.
Task 3 runs 0.86 seconds.
Task 0 runs 1.41 seconds.
Task 4 runs 1.91 seconds.
All subprocesses done.

代码解读:

对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。

请注意输出的结果,task 0,1,2,3是立刻执行的,而task 4要等待前面某个task完成后才执行,这是因为Pool的默认大小在我的电脑上是4,因此,最多同时执行4个进程。这是Pool有意设计的限制,并不是操作系统的限制。

# 进程间通信

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
    print('Process to write: %s' % os.getpid())
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    print('Process to read: %s' % os.getpid())
    while True:
        value = q.get(True)
        print('Get %s from queue.' % value)

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 启动子进程pr,读取:
    pr.start()
    # 等待pw结束:
    pw.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    pr.terminate()

运行结果如下:

Process to write: 50563
Put A to queue...
Process to read: 50564
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.
  • 在Unix/Linux下,可以使用fork()调用实现多进程。

  • 要实现跨平台的多进程,可以使用multiprocessing模块。

  • 进程间通信是通过Queue、Pipes等实现的。

# 多线程

Python的标准库提供了两个模块:_thread和threading,_thread是低级模块,threading是高级模块,对_thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

import time, threading

# 新线程执行的代码:
def loop():
    print('thread %s is running...' % threading.current_thread().name)
    n = 0
    while n < 5:
        n = n + 1
        print('thread %s >>> %s' % (threading.current_thread().name, n))
        time.sleep(1)
    print('thread %s ended.' % threading.current_thread().name)

print('thread %s is running...' % threading.current_thread().name)
t = threading.Thread(target=loop, name='LoopThread')
t.start()
t.join()
print('thread %s ended.' % threading.current_thread().name)

执行结果如下:

thread MainThread is running...
thread LoopThread is running...
thread LoopThread >>> 1
thread LoopThread >>> 2
thread LoopThread >>> 3
thread LoopThread >>> 4
thread LoopThread >>> 5
thread LoopThread ended.
thread MainThread ended.

由于任何进程默认就会启动一个线程,我们把该线程称为主线程,主线程又可以启动新的线程,Python的threading模块有个current_thread()函数,它永远返回当前线程的实例。主线程实例的名字叫MainThread,子线程的名字在创建时指定,我们用LoopThread命名子线程。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1,Thread-2……

# Lock

多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。

当多个线程同时执行lock.acquire()时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。

多线程编程,模型复杂,容易发生冲突,必须用锁加以隔离,同时,又要小心死锁的发生。

Python解释器由于设计时有GIL全局锁,导致了多线程无法利用多核。多线程的并发在Python中就是一个美丽的梦。

# ThreadLocal

import threading
    
# 创建全局ThreadLocal对象:
local_school = threading.local()

def process_student():
    # 获取当前线程关联的student:
    std = local_school.student
    print('Hello, %s (in %s)' % (std, threading.current_thread().name))

def process_thread(name):
    # 绑定ThreadLocal的student:
    local_school.student = name
    process_student()

t1 = threading.Thread(target= process_thread, args=('Alice',), name='Thread-A')
t2 = threading.Thread(target= process_thread, args=('Bob',), name='Thread-B')
t1.start()
t2.start()
t1.join()
t2.join()

执行结果:

Hello, Alice (in Thread-A)
Hello, Bob (in Thread-B)

ThreadLocal最常用的地方就是为每个线程绑定一个数据库连接,HTTP请求,用户身份信息等,这样一个线程的所有调用到的处理函数都可以非常方便地访问这些资源。

一个ThreadLocal变量虽然是全局变量,但每个线程都只能读写自己线程的独立副本,互不干扰。ThreadLocal解决了参数在一个线程中各个函数之间互相传递的问题。

# 网络编程

网络编程就是如何在程序中实现两台计算机的通信。

# TCP/IP简介

为了把全世界的所有不同类型的计算机都连接起来,就必须规定一套全球通用的协议,为了实现互联网这个目标,互联网协议簇(Internet Protocol Suite)就是通用协议标准。Internet是由inter和net两个单词组合起来的,原意就是连接“网络”的网络,有了Internet,任何私有网络,只要支持这个协议,就可以联入互联网。

因为互联网协议包含了上百种协议标准,但是最重要的两个协议是TCP和IP协议,所以,大家把互联网的协议简称TCP/IP协议。

IP协议负责把数据从一台计算机通过网络发送到另一台计算机。数据被分割成一小块一小块,然后通过IP包发送出去。由于互联网链路复杂,两台计算机之间经常有多条线路,因此,路由器就负责决定如何把一个IP包转发出去。IP包的特点是按块发送,途径多个路由,但不保证能到达,也不保证顺序到达。

TCP协议则是建立在IP协议之上的。TCP协议负责在两台计算机之间建立可靠连接,保证数据包按顺序到达。TCP协议会通过握手建立连接,然后,对每个IP包编号,确保对方按顺序收到,如果包丢掉了,就自动重发。

许多常用的更高级的协议都是建立在TCP协议基础上的,比如用于浏览器的HTTP协议、发送邮件的SMTP协议等。

个TCP报文除了包含要传输的数据外,还包含源IP地址和目标IP地址,源端口和目标端口。

一个进程也可能同时与多个计算机建立链接,因此它会申请很多端口。

了解了TCP/IP协议的基本概念,IP地址和端口的概念,我们就可以开始进行网络编程了。

# TCP编程

Socket是网络编程的一个抽象概念。通常我们用一个Socket表示“打开了一个网络链接”,而打开一个Socket需要知道目标计算机的IP地址和端口号,再指定协议类型即可。

# 客户端

大多数连接都是可靠的TCP连接。创建TCP连接时,主动发起连接的叫客户端,被动响应连接的叫服务器。

TCP连接创建的是双向通道,双方都可以同时给对方发数据。但是谁先发谁后发,怎么协调,要根据具体的协议来决定。例如,HTTP协议规定客户端必须先发请求给服务器,服务器收到后才发数据给客户端。

# 服务器

# UDP编程

TCP是建立可靠连接,并且通信双方都可以以流的形式发送数据。相对TCP,UDP则是面向无连接的协议。

使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口号,就可以直接发数据包。但是,能不能到达就不知道了。

虽然用UDP传输数据不可靠,但它的优点是和TCP比,速度快,对于不要求可靠到达的数据,就可以使用UDP协议。

# 备注

https://www.liaoxuefeng.com/wiki/1016959663602400(opens new window)

支付宝打赏
支付宝打赏
微信打赏
微信打赏